Force and energy requirement for microalgal cell disruption: an atomic force microscope evaluation.

نویسندگان

  • Andrew K Lee
  • David M Lewis
  • Peter J Ashman
چکیده

Cell disruption is an essential step in the release of cellular contents but mechanical cell disruption processes are highly energy intensive. This energy requirement may become a critical issue for the sustainability of low valued commodities such as microalgal biofuels derived from extracted lipids. By the use of an atomic force microscope (AFM), this study evaluated the force and energy required to indent and disrupt individual cells of the marine microalga, Tetraselmis suecica. It was found that the force and energy required for the indentation and disruption varies according to the location of the cell with the average being 17.43 pJ. This amount is the equivalent of 673 J kg(-1) of the dry microalgal biomass. In comparison, the most energy efficient mechanical cell disruption process, hydrodynamic cavitation, has specific energy requirement that is approx. 5 orders of magnitude greater than that measured by AFM. The result clearly shows that existing mechanical cell disruption processes are highly energy inefficient and further research and innovation is required for sustainable microalgal biofuels production.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)

In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...

متن کامل

GDQEM Analysis for Free Vibration of V-shaped Atomic Force Microscope Cantilevers

V-shaped and triangular cantilevers are widely employed in atomic force microscope (AFM) imaging techniques due to their stability. For the design of vibration control systems of AFM cantilevers which utilize patched piezo actuators, obtaining an accurate system model is indispensable prior to acquiring the information related to natural modes. A general differential quadrature element method (...

متن کامل

Size-dependent on vibration and flexural sensitivity of atomic force microscope

In this paper, the free vibration behaviors and flexural sensitivity of atomic force microscope cantilevers with small-scale effects are investigated. To study the small-scale effects on natural frequencies and flexural sensitivity, the consistent couple stress theory is applied. In this theory, the couple stress is assumed skew-symmetric. Unlike the classical beam theory, the new model contain...

متن کامل

Design of Fractional Order Sliding Mode Controller for Chaos Suppression of Atomic Force Microscope System

A novel nonlinear fractional order sliding mode controller is proposed to control the chaotic atomic force microscope system in presence of uncertainties and disturbances. In the design of the suggested fractional order controller, conformable fractional order derivative is applied. The stability of the scheme is proved by means of the Lyapunov theory based on conformable fractional order deriv...

متن کامل

Sensitivity analysis of a caliper formed atomic force microscope cantilever based on a modified couple stress theory

A relationship based on the modified couple stress theory is developed to investigate the flexural sensitivity of an atomic force microscope (AFM) with assembled cantilever probe (ACP). This ACP comprises a horizontal cantilever, two vertical extensions and two tips located at the free ends of the extensions which form a caliper. An approximate solution to the flexural vibration problem is obta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioresource technology

دوره 128  شماره 

صفحات  -

تاریخ انتشار 2013